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Abstract

Previously reported competitive adsorption data of 2-phenylethanol and 3-phenylpropanol on ODS-silica with
methanol-water mobile phase were fitted to the Langmuir isotherm, the generalized version of the Langmuir model
suggested by statistical mechanics, and the Jovanovic competitive isotherm equations. The best results were obtained with
the 11-parameter quadratic isotherm defined by the ratio of two second-degree polynomials, which takes into account all
molecular interactions in both the solution and the sorbed monolayer. The Jovanovic model was used to derive a relationship
widely applied to predict reversed-phase chromatography retention data as a function of aqueous binary mobile phases.
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1. Introduction

Preparative liquid chromatography has become
one of the most important purification techniques
used by the pharmaceutical industry [1-5]. One of
the major difficulties encountered in the development
of new application methods, their scale up and their
optimization, is the selection of the most suitable
model of non-linear chromatography to account for
the behavior of the individual band profiles and the
acquisition of the experimental data required for the
calculation of accurate solutions of this model
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[2,3,5]. If the calculated profiles can be validated by
their agreement with experimental profiles, a rapid
optimization of the experimental conditions for
maximum production rate, minimum production cost,
or extreme of any other objective function can be
achieved. This optimization is rapid, inexpensive
compared to the conventional empirical approaches
and avoids the wasting of chemicals.

Models based on continuity equations are power-
ful to describe the separation process [4] and are
largely used with great success [5]. However, the
effective use of these models requires that some
important physical characteristics of the system used
be modeled accurately. First among our needs is the
appropriate modeling of the adsorption isotherms.
Second is the modeling of the mass transfer kinetics.
In most practical cases, however, the influence of the
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mass transfer kinetics on band profiles is small
compared to that of thermodynamics. It can be
treated as a correction and the equilibrium-disper-
sive model, which uses an apparent dispersion
coefficient, has been quite successful, Thus, the first
problem remains of paramount importance for all
practical applications of non-linear chromatography.
A number of isotherms models have been used to
approximate the single-component and competitive
adsorption data acquired in liquid chromatography.
The Langmuir [6—17], bi-Langmuir [16-20], Fowler
[6], Quadratic [6,7,13,15,16,21] and models derived
from the IAS theory, like the LeVan—Vermeulen
model [6,15,16,18] are the most useful. Some other
important models have been almost ignored. For
example, the Jovanovic model [22-24] has been
used to account for single-component adsorption
[25,26], but the competitive Jovanovic model re-
mains ignored for the representation of the competi-
tive adsorption data used in preparative HPLC.

The goal of this paper is the application of the
single-component and the competitive adsorption
isotherm models of Jovanovic to liquid chromatog-
raphy. The use of this model permits the simple
derivation of a conventional relationship, widely
applied to predict the dependence of reversed-phase
chromatography retention data as a function of the
composition of aqueous binary mobile phases and
the correct description of single-component and
competitive adsorption data obtained by reversed-
phase HPLC and data previously reported by us [6].

2. Theory

In this study, we compare the results obtained with
six different models of competitive adsorption iso-
therms, the Langmuir model, two versions of the
extended Langmuir model suggested by statistical
thermodynamics, and three versions of the Jovanovic
model. As in all studies of this type, we must
acknowledge that the procedure used for the de-
termination of the best values of the parameters of a
model does not guarantee that the values obtained
have the physical meaning given to them in the
derivation of the equations of the model.

2.1. The competitive Langmuir isotherm

The competitive Langmuir model [27] is the
simplest model used:

a,C, 0
4= <, .
L+ 276G,
where ¢, and C, are the concentrations of the ith
component at equilibrium in the stationary and the
mobile phase, respectively, a, and b, are numerical
coefficients, characteristic of the components and the
chromatographic system. The ratio g, = a,/b; is the
monolayer capacity for the ith component. For this
reason, g, is often replaced by ¢.b; in Eq. 1. For the
single components, Eq. 1 becomes [28]:

qs,lblcl

N=T45,C, (22)
q,.,b,C,

%= T+b,C, (2b)

Thus, all the coefficients of the competitive iso-
therms, Eq. 1, can be derived from measurements
made with single, pure compounds, which is very
convenient from the experimental point of view.
However, the basic assumptions of the competitive
Langmuir isotherm model falter when g, # g, ,. A
competitive isotherm derived from the coefficients of
single-component Langmuir isotherms would not
satisfy the Gibbs—Duhem relationship and would not
be compatible with thermodynamics [31]. In prac-
tice, poor results are obtained in such cases.

2.2. The quadratic isotherm

We consider here two competitive forms of this
isotherm, more often used as a single-component
isotherm  model.  Statistical  thermodynamics
[7,21,32,33] shows that the general form of an
isotherm equation should be the ratio of two polyno-
mials of the same degree. For the first degree, we
obtain the Langmuir isotherm, Eq. 1. For the second
degree, which seems to be the most complex such
model which can be used in practice, Ruthven and
Goddard [33] have shown that:
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9
@ =
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b2C2 + bIlCICZ + 2b22C§
= (3b)

1 + bICI + b2C2 + bL;’CIC2 + bl.lC? + b2.2C§

where @), is the fractional coverage of a monolayer
and the b, and b, ; are numerical coefficients. This
model contains six parameters, including ¢, instead
of three for the competitive Langmuir model (Eqgs.
2a and 2b).

Similar, but different, equations have been sug-
gested for a quadratic model. For example, it has
been suggested to write:

aC + al.ZC]CZ + al,lclz
1+b,C, +b,C, +b,,C,C,+b, ,C}+b,,C>

q
(4a)

a,C, +a,,C,C, +a2’2C§
1+6,C, +b,C,+b,,C,C, + bl.lc?l. + bz,zcé

9, =
(4b)

where a, ; and b, ; are numerical coefficients. The
coefficients a; and b, can be determined from the
single-component Langmuir models, Egs. 2a and 2b,
to which Eqs. 4a and 4b reduce in the case of
single-component adsorption. The parameters a, ; and
b, ; can be interpreted, with reference to the kinetic
derivation of the Langmuir model, as accounting for
the influence of the concentration of one component
of the binary mixture on the rate of desorption of the
other, thus becoming equal to zero for single-com-
ponent adsorption. The simplified version of the
models of Egs. 4a and 4b is obtained neglecting this
influence, as a first approximation. Then, the follow-
ing expressions are obtained:

a,C +a ,CC,
4T 145,C,+b,C, +b,,C,C,

(5a)

a,C, +a, CC,
©7145,C,+b5,C,+b,,C,C,

(5b)

2.3. The Jovanovic isotherm

This isotherm model was derived for monolayer,
non-localized adsorption, without lateral interactions
on an homogeneous solid surface [22]. The deriva-
tion of the Jovanovic isotherm model is kinetic and
considers the interactions between the mobile phase
molecules and the adsorbed molecules. Later, the
Jovanovic model was extended to mixtures of com-
pounds having different distribution functions of the
settling times of the adsorbed molecules on the
surface [23,24].

2.3.1. The original Jovanovic isotherm

In its original form, the competitive Jovanovic
isotherm assumes that there is a zero dispersion of
the settling times the distribution of which is given
by the a function [23,24]:

a| Cr+a;1C ay 2Cy
e 11Tt _ eh2C2

= ‘ 6a
9 V] 4 g€t a12€e _ ga120 4 o@21C1% 220 _ ga21€) ( )
2101720y _ g421C)
€ o 4
4. =4, 14 e 1117 912C _ 09122 4 021 C1+422C2 _ 02,161 (6b)

These equations simplify in the case of a pure
compound and we obtain:

g =A[1-e ] ™

2.3.2. The Jovanovic isotherm with a random
distribution of settling times

This competitive isotherm assumes, as the Lang-
muir model, that the distribution of settling times of
the adsorbate molecules on the surface is completely
random [24]. The isotherm is:

q,

]+bI.ICI +b|.2C2
l+b|'|C|

1+b,,C +b,,C,

T i+b,,c, TG

bl.ICI

=Al 1 +b2.IC| +b2.2c2

1+b.,6 1+b,,C,

(82)
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1+b, C +b,,C,
1+6,,C,

1 +bL|Cl +b1.2c2
i+b,,C,  0aG

bLZCZ

~ 4 [+ 5,,C, +b,.C.

1+6,,C,

I+ bl.ICl
(8b)

In the case of the adsorption of a pure compound
(C;=0, C;#0), Egs. 8a and 8b reduce to the
equation of the Langmuir isotherm (Eq. 2), while for
a; ; =0, they reduce to the competitive isotherm (Eq.

D).

2.3.3. The Jovanovic isotherm with a Heaviside
distribution of settling times

In this case, the distribution of settling times is
assumed to be accounted for by the Heaviside
function [24]:

9W=ATTy, +, (9a)
%=4Ty Ty, (9b)
with:
Y, =(1+b,,C +5,,0) Iieal‘,clw,lcz
e“l,zcz :|
e 10
1+b,,C, (10a)
Y,=(1+b,,C, +b,,C,) [e"z-lcl“ucz
e?21C ]
- 10b
1+b,,C, (10b)

In the case of the adsorption of a pure compound,
Egs. 9a and 9b become:

—a; ;C;
qf=Af['—1T;,.‘c‘] (b

When a; ; =0, Egs. 9 and 10 reduce to Egs. 8 while

when b, ; = 0, these same equations reduce to Egs. 6.
The higher degree of generality of the model ex-
pressed by Eqs. 9 compared to the previous models,
expressed by Egs. 1, 6, or 8 in terms of the settling
times distribution function was previously reported
by Vlad and Segal [24].

2.4. Relationship between retention factor and
mobile phase composition in RPLC

In reversed-phase liquid chromatography, the de-
pendence of the retention factor, k;, of the ith
analyte on the composition of a binary aqueous
mobile phase is usually approximated by the follow-
ing relationship [29]:

Ink; =Ink;, =S¢, (12)

where &/, is the retention factor of analyte i in pure
water, ¢, is the volume fraction of the organic
modifier in the mobile phase, and §; is a numerical
coefficient characterizing the behavior of analyte i.

In a typical analytical separation by RPLC, two
conditions are usually met: (1) the mobile phase
concentrations of all the analytes are very low,
significantly lower than the concentrations of the
organic modifier(s) in the mobile phase (C; < ¢,).
As a consequence, the influence of any analyte on
the adsorption of any other analyte is negligible; and
(2) only the analytes and the organic modifier
compete for the free sites which are available on the
hydrophobic surface of the adsorbent.

These assumptions allow the use of a binary
competitive isotherm to account for the influence of
the concentration of the organic modifier on the
adsorption behavior of the analyte. Starting from the
original Jovanovic isotherm, Eqs. 6a and 6b, and
assuming 1 to be the analyte and 2 the organic
modifier, we can replace the exponential terms
containing C, by their series expansion since C, is
small. Eliminating the higher degree terms of the
expansion, we obtain:

4262
a, Ce
a)2C3 a32Cy ] 4320,
C,[al‘,e +a,,e a,, |te

(13)

g9, =4,



1. Quiriones, G. Guiochon | J. Chromatogr. A 734 (1996) 83—96 87

Because the concentration of the analyte is much
smaller than that of the modifier (C, < C,), we can
consider that':

C\la, e +a, 62— g, | <e22% (14)

and we obtain:
al.lcle"l.zcz
Q=AT e (15)
o422
The retention factor is defined as k' = Fq, /C,, where
F is the phase ratio. Combining this definition and
Eq. 15 and taking the logarithm gives:

lnk;=1nA,a,vlF—(aZ'2—al_z)C2 (16)
Eqs. 12 and 16 are identical, with:

k:,w:Alal.lF (17a)

S =a,,~a, (17b)

The fact that the Jovanovic model predicts the
correct dependence of the retention factor on the
mobile phase composition in RPLC, which the
Langmuir isotherm does not, suggests that it could
be useful to account for the isotherm data obtained in
this area.

3. Experimental
3.1. Origin of experimental data

The experimental data used in this study have
been previously reported [6]. They deal with the

"In pure water (i.e., hence C, =0), Eq. 13 gives the Langmuir
isotherm, Eq. 2, hence k, , = A a, F/(1+a, ,C,), which shows
that the retention factor in pure water depends on the analyte
concentration. The same conclusion follows from Eq. 13 for
binary mobile phases. The first assumption made above, that the
amount of any analyte adsorbed at equilibrium is independent of
the presence of other components, is usually valid in analytical
HPLC because of low concentrations. This requires that the
relationship 14 be also valid, so that Henry's law holds for solutes
in pure water or mixed mobile phases [34].

adsorption of 2-phenylethanol (PE) and 3-
phenylpropanol (PP) on ODS-silica Vydac (Hes-
peria, CA, USA) with (50:50) methanol-water solu-
tion as the mobile phase. Frontal analysis was
performed with a Gilson (Middleton, WI, USA)
Model 302 pump, a 10-port Valco (Houston, TX,
USA) valve, and a Spectroflow (Applied Biosystems,
Ramsey, NJ, USA) 757 UV-detector. The composi-
tion at each intermediate plateau was determined
using an on-line chromatograph assembled with a
Beckman (Berkeley, CA, USA) Model 110B pump,
a Valco 4-port valve, a YMC (Wilmington, NC,
USA) cartridge column and another Spectroflow
detector. Both UV analog signals were acquired with
a Gilson Model 621 interface box and monitored
with a computer.

3.2. Non-linear least squares analysis

The fit of the experimental data points to the
isotherm equations was accomplished using the
software package Statgraphics v. 5.0. The fitting
procedure requires prior identification of the com-
mon parameters in a system of non-linear equations.
This task may be classified as a multi-variant, multi-
objective, non-linear programming problem. Many
methods are available to solve it. The procedure
presented here is relatively simple and assures
convergence in many cases, even for complex
models containing a significant number of adjustable
parameters. Thus, it can be used as a useful tool to
solve practical problems.

The algorithm used is based on Marquardt’s
method {30]. The system of equations for the case of
the Langmuir competitive isotherm model applied to
a binary mixture is given in Eq. 1 or, for an n-
component mixture by:

a,C, (182)

Q=< a
I 1+2i:lbici

a,C,

4 =""<n (18b)
: 1+ zi:lbici

- (18¢)

ql = n c
1+ 2, b,
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a,C

n'n

9 =
1+ 2;=|biq

We need to identify the common parameters, b, b,,

. and the non-common parameters a,, a,, ....
The non-linear regression procedure of Statgraphics
permits the fit of the models of the type:

y =fxx,,.05%,) (19)

(18d)

where y is a dependent variable and x,,x,, ..., x,
are independent variables. The system of Eqs. 18 is
composed of several dependent (q,, g,, ..., g,) and
independent (c,.c,,...,c,) variables. Thus, it is
impossible to process this system of equations
directly with Statgraphics and we need to change it
to an equivalent equation system having the form
given in Eq. 19. The transformation is illustrated
below for a binary mixture and four measurements of
the equilibrium composition carried out on four
different mixtures. For the ith measurement, the
values of g, ;, ¢, ;, C, ,, and C,, are determined. The
experimental data vectors are:

Diexp = [91.1:912:91 3,9 4] (20a)
Tooxp = (4214922092392 4] (20b)
Choxp = [C1.C2.C, 5., 4] (20¢)
Chenp = [C51.C55.C, 5,C 4] (20d)

The new variables are constructed as:

Yexp = (9,1:91 2:91 391 4:92.192 2292 3:92 4] (21a)

Xyexp [C, ,.C)5.C, 5.C 4.C G 5C 50 L]

(21b)
Xponp = 1C21C22:C 1:C2.4.C 1.C52.C5 5,Ca ]

(21c)

x, =(1,1,1,1,0,0,0,0] (21d)

x, =[0,0,0,0,1,1,1,1) (21e)

where x, and x, are logical, complementary vari-
ables. The new model is constructed as:

A b x
T 1+ bx

1% 1 exp

I.exp

+ b2x2,exp

X3

A 2b2x2.exp

TT+byx,., +b

le.epr4 (22)

The first term of the new model permits the fit of
the experimental data to Eq. 18a for a binary
mixture, while the second term permits the same fit
to Eq. 18b. The method can be extended simply, first
to as many experiments as desired for the two-
component system, then to the system of Eqgs. 18 for
an n-component mixture and for m experiments. The
values calculated for the isotherm parameters give
the least residual sum of squares (RSS) for both
components. The procedure minimizes the value of
the following function

RSS =2, (e — 20’ (23)
i=1

where y,,,, is determined by the elements of the

vectors such as the one in Eq. 20a and y,, is

calculated using Eq. 22. The significance of the

identified parameters and the selection of the most

adequate model was performed using Fisher’s test.

The model selected was the one which exhibited the
highest value for the Fisher parameter:

_ (m - l)zi:l(yexp.i _y-e—xp)z
cale m 2
(m — l)zi:l(—ycxp.l —yl.i)~

(24)

where y_ is the mean value of the variable y., and
[ is the number of adjusted parameters of the model.

The same procedure was applied to each of the
isotherm models using the same set of experimental
data [6] and following the same progressive ap-
proach as reported previously: (1) to determine the
best values of the parameters for the single-com-
ponent isotherm model and use them in the corre-
sponding competitive model while fitting the remain-
ing interaction parameters when needed; and (2) to
empirically fit the whole set of parameters of the
model.

4. Results and discussion

The results of the regression analysis of the
models evaluated are reported in Table 1. The first
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column of this table gives the equation numbers of
the isotherm models discussed in the text. The values
of the RSS are listed separately for each component,
in the cases of the single-component and the com-
petitive isotherm data. The values between parenthe-
ses correspond to the competitive data. The global
value of the RSS for the whole set of single and
competitive data (RSS) is also given, as well as the
value calculated for the Fisher parameter. For the
sake of comparison with the results obtained in this
study, Table 2 reports the results obtained previously

[6].

4.1. Langmuir isotherms

The fit of the Langmuir model (Egs. 2a and 2b) to
the single-component data gave values of the iden-
tified parameters which are statistically similar (in
terms of the asymptotic 95% confidence interval) to
those determined previously [6]. However, the values
of the estimates are slightly different and the value of
the RSS calculated using Egs. 1 or 18a and 18b, and
the competitive data is higher for PE and lower for
PP compared to those reported [6]. The new global
value of the RSS for both components is also lower.
This justifies the recalculation of the parameters of
the Langmuir model for the set of experimental data
previously analyzed [6]. This ensures homogeneity
in the analysis of the suitability of the several models
used in this study because the use of these models,
which were not tested previously, requires the calcu-
lation of the Langmuir single-component identified
parameters.

The empirical fit of the competitive Langmuir
model (Egs. 1) gives a value of RSS which is lower
than the one previously reported [6]. The parameters
A, and b, are statistically different from those
reported previously, while A, and b, are similar. All
the parameters are significantly different from those
determined for single-component adsorption. The
RSS of PP is lower than the one reported [6],
whereas it is higher for PE. The best fit of the model
to the whole set of experimental data causes com-
promises in the estimates of the data for both
components. In the previous analysis [6], the com-
promise was mainly on the estimate of the PP data
(see Table 2) and the fit of the PE data remained as
good as the one obtained when using only the single-

component parameters in the competitive model.
These differences are probably a result of the use of
a different software package and of the application of
different objective functions in the least-squares
minimization procedures in the present work and in
the previous study [6,21].

4.2. Simplified quadratic isotherm

The fit of the 7-coefficient quadratic models (Egs.
5a and 5b), which uses the four parameters de-
termined by regression of the single-component data,
gives a value of the RSS which is lower than the one
previously reported [6] for the same test. The value
of the RSS for PE is slightly higher while the one for
PP is significantly lower. The value of a,, remains
similar. The values of the coefficients a,, and b, ,
are different, especially the latter which, although
small, is significantly different from zero. The nega-
tive value of a,, shows that an increase in the
mobile phase concentration of PE produces a greater
decrease of the stationary phase concentration of PP
than predicted by the Langmuir model (Eq. 1). The
positive value of a,, reflects an influence of the
mobile phase concentration of PP on the stationary
phase concentration of PE at equilibrium which is
opposite to the influence of PE on PP. The influence
of a,, may be explained in terms of the kinetic
equations from which Egs. 5a and 5b are derived
from [21]. The positive value of b, , results in an
increase in the value of the denominator in Eqs. 5a
and 5b and in an additional decrease in the stationary
phase concentration of both components at equilib-
rium, compared to that predicted by the Langmuir
model.

The empirical fit of the experimental data to the
model results in statistically similar values for all the
identified parameters in this work as well as in our
previous study [6], with the exception of b, ,/b, |.
The value obtained for b, ,/b, |, although small is
statistically significant. The value of the global RSS
is lower than previously reported [6]. As in the case
of the empirical fit of the Langmuir model, the RSS
of PP is lower than that reported previously [6],
whereas that of PE is higher.

The best fit of the model to the whole set of
experimental data is achieved by sacrificing some of
the accuracy of the estimation of the data for both
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Table 1

Summary of the non-linear regression analysis
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Model

Parameters

RSS

PE

PP

2RSS

cale

Egs. | and 2 SCD*

Eqgs. 1 best fit

Eqgs. 5 and 2 SCD

Eqgs. 5 best fit

Eqgs. 4 and 2 SCD

Eqgs. 4 best fit

q.,=154=7
a,=2.30%0.01
5,=0.01520.001
q.,=134=12
a,=4.7+0.2
5,=0.03520.005
q.,=49+8
a,=2.8+0.2
b,=0.06+0.01
q.,=230=60
a,=3.9%0.2
b,=0.0220.01
a,=2.3*0.01
a,,=0.08+0.04
a,=4.7+0.2
a,,=-0.17+0.06
b,=0.0150%0.0009
b,=0.035+0.005
b,,=0.006=0.004
b,,=0.006=0.004
a,=23%02
a,,=0.03%0.04
a,=4.0%0.2
a,,=-0.07%0.06
b,=0.02+0.02
b,=0.017+0.004
b,,=0.005=0.002
b,,=0.005%0.002
a,=2.3%0.01
a,,=0.0420.04
a,,=-0.06+0.04
a,=4.7*0.2
a,,=-0.23+0.06
a,,=0.05+0.04
b,=0.0150=0.0009
b,=0.035+0.005
b,,=-0.004£0.002
b,,=-0.001+0.001
b,,=0.00320.004
b,,=0.003%0.004
a,=(10=16) 10°
a,,=(14=12) 10*
a, =(15=10) 10’
a,=(6=8) 10"
a,, =(22=16) 10’
a,,=(3%2) 10°
b,=(7%6) 10°
b,=(6x4) 10°
b,,=(14%10) 10’
b,,=(9£10) 10’
b,,=(16%14) 10°
b, =(16=14) 10°

5
5

0.002

(3.08)

2.24

(6.59)

0.002

(1.74)

0.03

(1.40)

0.002

(2.74)

0.14

(1.37)

0.444

(249.61)

12.39

(13.11)

0.444

(42.29)

10.00

(12.67)

0.444

(27.65)

0.02

(2.45)

253.14

34.33

44.48

24.10

30.84

3.98

22.99

169.5

132.61

231.64

181.05

1320.5
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Table 1 (continued)

Model Parameters RSS

PE

2RSS

™

cale

PP

Egs. 6 and 7 SCD A =A,=79*4
a,,=0.0290.002
a,,=0.057%0.004 0.002
a,;,=0.02+0.01
a,,=-0.06+0.01 (4.04)
A =43%6

a,, =0.06=0.01 0.76
a,,=0.020%0.02

A,=117%26 (1.91)
a,,=0.034x0.008

a,, =0

A,=154%7

b,=0.015£0.001

b,,=0 0.002
A,=134+12
5,=0.035+0.005
b,,=-0.065+0.008
A, =65x22
b,,=0.04=0.02 0.98
b,=0

A,=201*46 (2.59)
b,,=0.020+0.006
b,,=-0.02+0.02

A =A,=134%7
a,,=0.031x0.01 0.001
b,,=-0.01£0.01
b,,=0.035+£0.003 (2.60)
a,,=-0.073+0.01

b,=a,,=0

by =a,,=0

A, ,=89*42

b,,=0.02720.02 0.45
A,=206*46

b,,=0.020+0.005 (1.37)
a,,=-0.04+0.02

b\,=a,=0

by =a,,;=a, =0

Eqgs. 6 best fit

Eqgs. 8 and 2 SCD

(2.94)

Egs. 8 best fit

Egs. 9, 10and 11 SCD

Eqgs. 9 and 10 best fit

116.14
0.7 51.46

(46.72)

9.69
30.25 189.82

(17.89)

86.66
0.444 69.88

(66.49)

9.24 183.94
31.21

(18.40)

0.44 129.68
46.69

(43.65)

8.73 28.59 200.79

(18.04)

* Competitive model which uses single-component identified parameters.

components. In the previous study [6], the main loss
was experienced on the estimate of the PP data, as
seen in Table 2. It is worth noting the statistical
similarity between the following sets of parameters:
a, from the best fit of Egs. 5 and from the single-
component data (Eqs. 2); a,, from the best fit of
Egs. 5 and from the fit of the data to Eqgs. 5 when
using the single-component parameters for the as
and b;s; a, from the best fit of Eqs. 5 and from the

best fit of the single-component data to Eqgs. 1; b,
from the best fit of Eqs. 5 and from the fit of the
single-component data to Eqs. 2; b, from the best fit
of Egs. 5 and from the best fit of Eqgs. 1; b, , from
the best fit of Eqs. 5 and from the fit of Egs. 5 when
using the single-component identified parameters.
These similarities are the obviously the result of the
relationship between the Langmuir and the 7-param-
eter quadratic model.
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Table 2
Summary of previously reported [5] results
Model Parameters RSS
PE PP
Egs. | and 2 SCD A,=153
a,=23 (2.4) (287)
b,=0.015
A.=124
a,=4.82
b,=0.039
Eqgs. 1 best fit A =109
a,=24 0.20 30.6
b, =0.022
A,=200 (1.78) (16.4)
a,=3.83
b,=0.01913
Egs. 5 and 2 SCD a,=2.30
a,,=0.030 (1.26) (75.8)
a,=4.82
a,, =-0.20
b,=0.015
b,=0.039
b,=b, =0
Eqs. S best fit a, =230
a,;,=0.02 022 48.6
a,=3.85
a,,=-0.075 (0.93) (8.3)
b,=0.021
b,=0.022
bh,.=bh, =0

4.3. Complete quadratic isotherm

The fit of the complete, 11-coefficient quadratic
model (Egs. 4) using the values of the parameters «,
and b, determined by regression of the single-com-
ponent data to the Langmuir model (Eqs. 1) affords a
value of the RSS which is lower than the one
obtained with the best fit of the data to the Langmuir
model and to the 7-parameter quadratic equation
(Egs. 5). The assumptions on which the equations
(Egs. 4) of this model are based make it possible to
take into account the molecular interactions between
adsorbate molecules in both the solution and the
sorbed monolayer. The derivation of the model
considers that the rates of adsorption and desorption
of each component are linear functions of the
concentrations of both components in both phases.
The foue parameters a, |, a,,, b, | and b, , account

for the influence of the concentration of one com-
ponent of the binary mixture on the rate of desorp-
tion of the other, while this influence is not consid-
ered in the Egs. 5. This should improve the accuracy
of the former model (Egs. 4). The parameters a, ,,
a,,, b, and b, are statistically similar to those
determined in a similar manner for the 7-parameter
quadratic model using single-component derived
parameters.

The empirical fit of the experimental data to the
Eqgs. 4 resulted in a low value of the RSS (see Table
), as expected, since model errors decrease with
increasing number of the adjustable coefficients. The
RSS value is lower than the one obtained for any
other model studied here or previously [6]. It is even
better than the one obtained with the Fowler model
[6]. However, the values of the estimates obtained
are very different from those determined with any of
these models. The adjustment errors are higher, due
to the significant numbers of parameters involved in
the fitting procedure. The numerical values of the
estimates are physically unrealistic, for example, the
monolayer capacity. This situation occurs often when
experimental data are fitted to complex models with
many parameters. The equation tends to become
empirical and its parameters to lose their physical
meaning.

Eqs. 4 are explicit with respect to the mobile
phase concentrations of the components. According-
ly, they can be implemented directly in programs for
the calculation of band profiles in non-linear chroma-
tography. They do not suffer from the serious
practical drawback of the Fowler isotherm model
which requires the implementation of its numerical
inversion in each loop of the program, causing a
considerable increase of the CPU time required.

4.4. The original Jovanovic isotherm

The single-component Jovanovic model (Eq. 7a
for one component, with a,, =C, =0) accounts
fairly well for the experimental data. The RSS for PE
has the same value as the one obtained with the
Langmuir model while the one obtained for PP is
higher, as seen in Table 1. The difference between
the values of the monolayer capacity obtained for PE
and PP by the separate regression analysis of each
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single-component data was not significative in
statistical terms and a unified value was estimated for
the whole set of single-component data. The fit of
the competitive model (Eqs. 6a and 6b) with these
values of the single-component parameters (a, , and
a,,) permitted the obtention of a RSS value which
was less than the one obtained with the competitive
Langmuir model (Egs. 1). The parameters a, , and
a,, account for the interactions between the two
components. The coefficient a,,, which character-
izes the influence of the mobile phase concentration
of PE on the amount of PP adsorbed on the station-
ary phase has a higher absolute value, is negative,
and was determined with less error than the converse
cross-coefficient, a, ,.

These facts show that the non-ideal influence of
the concentration of PE over the amount of PP
adsorbed is stronger than the converse. They confirm
the results previously established with the two
versions of the quadratic model. It seems that the
influence of PP over PE is almost ideal, and can be
accounted for quite well by the majority of the
models previously tested, even by the competitive
Langmuir model which uses the single-component
identified parameters and takes no account of any
adsorbate—adsorbate interactions. The negative value
obtained for a,, implies, in terms of the Jovanovic
model [23], that the increase of the mobile phase
concentration of PE causes an increase of the number
of the PP molecules desorbed during the settling
time, for a given equilibrium number of adsorbed PP
molecules. In other words, this means that the PE
present in the mobile phase ‘extracts’ the adsorbed
PP. This is an interesting result because, in the
derivation of the isotherm equations of the Jovanovic
model [22-24], there is no explicit reference to the
possibility of finding negative values for the inter-
action parameters @, ;. Accordingly, the physical
meaning of the parameters obtained is questionable.

The fitting of the experimental data to Eqs. 6a and
6b gave a value of RSS lower than the one obtained
with the fitting of the same data to the competitive
Langmuir model (Egs. 1). The similarity between the
values obtained for the monolayer capacity (A ,) and
the non-linear parameters (b, and a,,) for both
models is remarkable. This result may be related to
the fact that the Langmuir model can be derived
from the Jovanovic model by expanding the ex-

ponentials in power series and neglecting the non-
linear terms. During this operation, the parameters
depending on two different subscripts, which are
those accounting for the interactions between differ-
ent components, vanish [23). This does not mean,
however, that the competitive Langmuir model can
be considered as a particular case of the Jovanovic
model (Egs. 6) [24]. A similar situation is observed
between the values A,, a,, from the best fit of the
Jovanovic model and the terms a, and b, obtained
from the best fit of the Langmuir model (Egs. 2)
using single-component data.

4.5. The Jovanovic isotherm with random
distribution of settling times

The fit of the experimental data to this second
Jovanovic model (Egs. 8), a model which uses the
single-component parameters identified from the
Langmuir model confirms the previous result, re-
garding the different influences of the mobile phase
concentrations of the two adsorbates on the amount
of the other one adsorbed at equilibrium. The value
of b, , is near 0, which confirms the weak influence
of the mobile phase concentration of PP on the
amount of PE adsorbed. Because this model (Egs. 8)
reduces to the Langmuir model (Egs. 1), for values
of the b, ; parameters equal to 0, it is obvious that the
influence of PP over PE is almost ideal and may well
be accounted by the Langmuir model, as stated
previously. It is worth noting the similarity between:
(1) the absolute value, error and sign found for a,
from the best fit of Eqs. 6 using single-component
data; and (2) those found for &, , from the similar fit
of Eqgs. 8 because these two coefficients have a
similar physical meaning. The value obtained for the
RSS with this model is larger, however, than that
obtained for the model of Egs. 6. So, this second
Jovanovic model, which considers a completely
random distribution of the settling times, is less
adequate to account for the adsorption data in the
chromatographic system studied.

The empirical fit of the whole set of experimental
data to Egs. 7 gives a value of RSS slightly higher
than the one derived from the empirical fit of same
data to the previous model (Egs. 6). Noteworthy is
the statistical similarity between the parameters A |,



94 1. Quiriones, G. Guiochon | J. Chromatogr. A 734 (1996) 83-96

b, ,, A, and b, , derived from the empirical fit of the
data to Eqs. 7 and the parameters A, b,, A, and b,
derived from the empirical fit of the same data to

Egs. 1.

4.6. The Jovanovic isotherm with Heaviside
distribution of settling times

The fit of the experimental data for the pure
components to the non-competitive form of this last
model (Eq. 11) gave values for the monolayer
capacity of both components which were not statisti-
cally different, so a unique value was estimated from
a fit of the whole set of single-component data to the
two Egs. 11. When q; ; =0, Egs. 9 and 10 reduce to
Egs. 8 while when b, ; = 0 these same Eqgs. reduce to
Egs. 6. The higher degree of generality of the model
expressed by Egs. 9 compared to the models corre-
sponding to Eqs. 1, 6 or 8 in terms of the settling
times distribution functions was reported elsewhere
[24]. 1t is noteworthy that the values obtained for the
parameter a, , from the fit of the data to Eq. 11 and
to Eq. 7 are statistically the same. An identical
situation is encountered for the values of b, , derived
from Egs. 11 or 2. The value derived for the
parameter A from Eq. 11 is similar to the one
obtained for PP by regression of the data to the
Langmuir model (Eq. 2). This is in compliance with
these parameters having a similar physical signifi-
cance in all models. However, there are significative
differences on the one hand between the values of
b, , obtained from the fit of the data to Eq. 11 and of
b, obtained from their fit to Eq. 2 and on the other
hand between the values obtained for a,, from the
fit of the data to Eqs. 11 and 6. The value of the RSS
for the fit of the data to Egs. 11 is the lowest
obtained for the single-component models evaluated.
There is no simple physical explanation to the
negative value of b, . The zero value obtained for
a,, implies that the adsorption of PP pure is better
accounted for by the Langmuir model, as stated
previously. Because the experimental data fit well to
the equations of the model is no guarantee that the
values obtained for the parameters have the physical
meaning afforded to them in the derivation of the
equations of this model.

The similarity between the values of the mono-
layer capacity estimated for each compound in terms
of two single-component adsorption isotherm models

should be underlined. This comment applies whether
the model used is expressed by Eqs. 7 or 11. These
compounds make a pair of monofunctional homologs
without any great difference between their chain
lengths. It is possible that their structural differences
have only little influence on the value of the surface
area of contact between the adsorbates and the
surface, as a result of the preferential spatial orienta-
tion of the adsorbates with respect to the surface.
This facts also explain why the LeVan—Vermeulen
model [31], previously tested [6], did not signifi-
cantly improve the quality of the fit obtained with the
Langmuir model. The values of the monolayer
capacity obtained from a fit of the data to the
single-component Langmuir model, although statisti-
cally different (20%), are very close, thus also giving
support to this hypothesis.

The fit of the experimental data to Egs. 9 and 10
using the values of the parameters identified in the
single-component study above confirmed the as-
sumption made previously regarding the weak in-
fluence of PP on the adsorption of PE due to
adsorbate—adsorbate interactions (a,, =b,, =0).
The a,, value is similar to that obtained in the
similar fit of the data to Eq. 6, whereas the value
obtained for b, is 0, at variance from the result
derived from the fit of the data to Eq. 8. The value
obtained for RSS is the lowest one obtained within
any of the Jovanovic models, but only slightly.
Accordingly, it is not possible to conclude whether
the higher degree of generality of the model [24]
makes it a better predictor of experimental data in
the specific case studied.

In spite of the complexity of this model, the
empirical fit of the experimental data to the competi-
tive model (Egs. 9, 10) did not significantly improve
the value of the RSS compared to the values
obtained with the other models tested. For this
reason, it is not worth using this model to account
empirically for the whole set of experimental data.
The values of the parameters obtained do not deserve
special comment.

5. Conclusions

The present study confirms the need of continuing
the search for adsorption isotherm models which
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could correctly predict the competitive behavior of
the components of a binary mixture using parameters
identified from single-component adsorption be-
havior. None of the models tested previously [6] or
evaluated in this study gave results which are
completely satisfactory, although all of them predict
the competitive behavior of the two components
studied better than the Langmuir model. Unfortuna-
tely, it is necessary to have competitive adsorption
data available in order to identify the interaction
parameters present in these models. So far, the
competitive Fowler isotherm model remains the best
in terms of the prediction of the competitive data
from the analysis of single-component data, as
previously reported [6]. This model is the simplest
model of localized adsorption with non-specific
lateral attractive interactions between the adsorbed
molecules. It does not consider any interactions in
the liquid phase [32]. The Jovanovic models, on the
other hand, do not take into account the interactions
between adsorbed molecules.

Thus, models which take into account adsorbate—
adsorbate interactions in both phases, such as the
11-parameter quadratic model, appear to be the
strongest candidates to solve the present problem.
The empirical fit of the experimental data to these
models, although a practical procedure of parameter
identification, does not give, in general, a low value
of the RSS. This is true even with the Fowler model.
In most cases, the estimation of the single-com-
ponent data is severely sacrificed. The only reason-
able exception seems to be the 11-parameter quad-
ratic model which accounts well for the whole set of
experimental data, giving a fairly low value of the
RSS. This model is explicit with respect to the
mobile phase concentrations of both components.
This eliminates the serious, practical drawback asso-
ciated with the use of the Fowler isotherm model,
which is due to the need for its numerical inversion
in each loop of the programs which calculates band
profiles in non-linear chromatography and to the
corresponding increase of CPU time required.
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